Targeting Toxoplasma parasites and their protein accomplices
Toxoplasmosis is an infectious disease caused by the parasite Toxoplasma gondii and is transmitted via contaminated food or feces. The infection can cause a range of symptoms that may be mild or severe, resulting in blindness and brain infection. Current T. gondii therapeutics are not very effective, so scientists need to further investigate potential drug targets.

Sheena Dass and a team of researchers from the Université Grenoble Alpes, France, identified seven genes responsible for expressing enzymes of metabolic interest in these parasites. Their recent in the Journal of Lipid Research characterizes one of these enzymes, T. gondii acyl-CoA synthetase 3, or TgACS3.
TgACS3 was found to be localized in the cytosol of the parasite and to upregulate its parasitic growth while increasing its chances of survival within its host. Gas chromatography-mass spectrometry was implemented to analyze the lipid content in the parasite, which revealed the role of TgAC3 in the uptake and utilization of its host fatty acids, generating the parasite phospholipid layer, and maintaining the growth of new parasites.
This study is an important step towards achieving targeted therapeutic mechanisms in the treatment of Toxoplasmosis, as researchers can leverage the findings shared in a more rigorous analysis.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Cracking cancer’s code through functional connections
A machine learning–derived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17–21 in Cambridge, Massachusetts.

Bacterial enzyme catalyzes body odor compound formation
Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.