Targeting Toxoplasma parasites and their protein accomplices
Toxoplasmosis is an infectious disease caused by the parasite Toxoplasma gondii and is transmitted via contaminated food or feces. The infection can cause a range of symptoms that may be mild or severe, resulting in blindness and brain infection. Current T. gondii therapeutics are not very effective, so scientists need to further investigate potential drug targets.

Sheena Dass and a team of researchers from the Université Grenoble Alpes, France, identified seven genes responsible for expressing enzymes of metabolic interest in these parasites. Their recent in the Journal of Lipid Research characterizes one of these enzymes, T. gondii acyl-CoA synthetase 3, or TgACS3.
TgACS3 was found to be localized in the cytosol of the parasite and to upregulate its parasitic growth while increasing its chances of survival within its host. Gas chromatography-mass spectrometry was implemented to analyze the lipid content in the parasite, which revealed the role of TgAC3 in the uptake and utilization of its host fatty acids, generating the parasite phospholipid layer, and maintaining the growth of new parasites.
This study is an important step towards achieving targeted therapeutic mechanisms in the treatment of Toxoplasmosis, as researchers can leverage the findings shared in a more rigorous analysis.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Mapping the placenta’s hormone network
Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.

Spider-like proteins spin defenses to control immunity
Researchers from Utrecht University discovered two distinct binding modes of a spider-shaped immune inhibitor found in serum.

A biological camera: How AI is transforming retinal imaging
AI is helping clinicians see a more detailed view into the eye, allowing them to detect diabetic retinopathy earlier and expand access through tele-ophthalmology. These advances could help millions see a clearer future.

AI in the lab: The power of smarter questions
An assistant professor discusses AI's evolution from a buzzword to a trusted research partner. It helps streamline reviews, troubleshoot code, save time and spark ideas, but its success relies on combining AI with expertise and critical thinking.

Training AI to uncover novel antimicrobials
Antibiotic resistance kills millions, but César de la Fuente’s lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.