Fat cells are a culprit in osteoporosis
Approximately 10 million Americans have osteoporosis, also known as a silent disease due to symptoms that go unnoticed until a fracture occurs. Scientists are focused on understanding the mechanisms that contribute to the loss of bone strength, as well as developing therapies for prevention and treatment.

Weibo Hunag, Feng Hua and Tong Suand a team in China published an in the Journal of Lipid Research. They investigated the relationship between bone marrow adipocytes, or BMAds, and osteoblast bone building cells. BMAds are fat cells that reside in the bone marrow, and contribute to 10% of the total body fat and occupy 50–70% of the marrow cavity space. Their abundance has been associated with aging, postmenopausal period, obesity, radiotherapy and chemotherapy and glucocorticoid treatments.
The researchers treated bone marrow osteoblast cultures with adipocytes and observed that the adipocytes transferred lipid droplets to the osteoblasts. RNA sequencing and Western blot showed that the lipid droplet–filled osteoblasts downregulated osteopontin, a major bone-forming protein, and other osteogenic proteins. Furthermore, the lipids seemed to upregulate the ferroptosis pathway in the osteoblasts, inducing cell death, and it decreased oxidative phosphorylation, which generates cellular energy. When the researchers treated the osteoblasts with ferroptosis inhibitors, they found that impediments to the osteoblast cells were reversed.
This work shows the ferroptosis pathway and proteins such as ABHD5 as important targets for the development of effective treatments and prevention therapies for osteoporosis. Looking ahead, the researchers will conduct further investigations into the activation mechanisms of these pathways to provide a solid foundation for clinical translation.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How signals shape DNA via gene regulation
A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent ɬ paper.

A game changer in cancer kinase target profiling
A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent ɬ paper.

How scientists identified a new neuromuscular disease
NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.