ɬ﷬

ASBMB Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

Check out the latest foundational research at #ASBMB25
Christopher Radka Robert N. Helsley
By Christopher Radka and Robert N. Helsley
April 4, 2025

Year after year, groundbreaking research in lipid metabolism fuels new discoveries, transforming our understanding of cellular function and unlocking potential treatments for metabolic disorders and neurodegenerative diseases. At the ɬ﷬ annual meetings, scientists come together to share the latest breakthroughs — each study building on the last — to push the boundaries of what’s possible in basic research and clinical innovation.

Membrane dynamics and lipid–protein interactions

Lipid–protein interactions are central to maintaining cell membrane integrity, signaling, and protein activity. Disruptions in these interactions have been linked to diseases like Alzheimer's, cardiovascular disorders and autoimmune diseases, making them crucial targets for therapeutic research.

One notable abstract used cryogenic electron microscopy to explore ABHD5, a regulator of lipid homeostasis. This research revealed how ABHD5 interacts with lipids and regulates adipose triglyceride lipase activity, which is essential for lipid breakdown and energy balance. in ABHD5 can lead to nonalcoholic fatty liver disease, or NAFLD. Therefore, this research lays a foundation for potential NAFLD gene therapies.

In the same year, an on NAFLD investigated oxidized phospholipids that are recognized by an antibody. The researchers used a viral vector to express the antibody in the liver, which protected mice from liver damage and fibrosis. This suggests that oxidized phospholipids could serve as biomarkers for NAFLD and offers new therapeutic possibilities targeting lipid abnormalities.

Building on foundational phospholipid research from previous years, a examined how extracellular crowding agents affect the membrane binding of antimicrobial peptides like Buforin II. This discovery informs researchers on how to design more effective peptides to combat pathogens.

Another explored lipid rafts — specialized membrane regions — and their impact on the human follicle-stimulating hormone receptor, or hFSHR, crucial for fertility. Mutations in the receptor motif that binds the membrane protein caveolin disrupted signaling, impairing spermatogenesis. These findings emphasize the importance of lipid–protein interactions in cellular function and health.

These studies advance lipid science by examining how lipids and proteins interact to influence cellular function and disease progression. Lipidomics research highlights the diagnostic potential of specific lipid species, while studies on caveolae — lipid-rich membrane domains — demonstrate how membrane structure regulates signaling pathways. Furthermore, research on oxidized phospholipids connects these molecules to oxidative stress in NAFLD, while investigations into the membrane protein caveolin reveal its role in controlling stress-related signaling.

By targeting these lipid–protein interactions, researchers may unlock new therapeutic strategies for NAFLD, reproductive disorders and endothelial dysfunction.

Future of lipid science

Lipid metabolism research is evolving quickly, with breakthroughs reshaping our understanding of cellular function, disease progression and treatment options. Whether you're a researcher, clinician or science enthusiast, ASBMB meetings provide a unique opportunity to engage with the latest advancements in lipid science.

Stay up to date with the field and join us in shaping the future of lipid metabolism research. Register for the ASBMB annual meeting and be part of this exciting journey.

For lipid-focused sessions at #ASBMB25, check out the symposium on lipids and membranes, organized by of the University of Pittsburgh and of the University of Wisconsin–Madison.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Christopher Radka

Christopher D. Radka is an assistant professor studying lipid biochemistry in the microbiology, immunology and molecular genetics department at the University of Kentucky. He is also an ASBMB Today volunteer contributor.

Robert N. Helsley
Robert N. Helsley

Robert N. Helsley is an assistant professor of medicine at the University of Kentucky College of Medicine and a Journal of Lipid Research junior associate editor.

Featured jobs

from the

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Journal News

Sex and diet shape fat tissue lipid profiles in obesity

Oct. 29, 2025

Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta’s hormone network
Journal News

Mapping the placenta’s hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.