ɬÀï·¬

Journal News

Host fatty acids enhance dengue virus infectivity

Emily Ulrich
June 12, 2025

Mosquito-borne flavivirus infections cause changes in host lipid metabolism. For example, scientists found that the dengue virus, which has no known antiviral treatments, recruits host fatty acid synthase to aid in viral replication. In a recent Journal of Biological Chemistry , Julia Hehner at Philipps University Marburg and a team in Germany investigated the reliance of various flaviviruses on host fatty acid elongases and desaturases, key enzymes in the biosynthesis of monounsaturated and polyunsaturated fatty acids.

National Institute of Allergy and Infectious Diseases 3D renderings of dengue virions
National Institute of Allergy and Infectious Diseases
3D renderings of dengue virions

Working with a human hepatic cell line, the authors used RNA interference to individually knock down each fatty acid elongase and desaturase, enzymes that catalyze specific steps for producing fatty acids of different lengths. They exposed the cell lines to dengue, Zika, West Nile, yellow fever and tick-borne encephalitis viruses to measure viral replication. Only dengue virus showed sensitivity to the knockdowns, indicating that this virus relies on fatty acids of specific lengths, while the other viruses can compensate for the loss of one enzyme. Knocking down either the ultra-long-chain elongase ELOVL4 or desaturase FADS2 caused decreased dengue viral titers.

The researchers determined that ELOVL4 knockdown led to slightly lower viral protein levels in the infected cells, possibly signaling ELOVL4 involvement in delaying RNA replication. Surprisingly, the cells lacking FADS2 showed a slight increase in viral protein levels. The authors next measured plaque formation of dengue virus particles produced by the knockdown cell lines and found that cells lacking FADS2 produced viral particles with diminished infectivity. This indicates that FADS2 may promote lipid synthesis necessary for dengue virion assembly.

Future studies will help address the mechanisms behind the observed increase in viral protein levels upon FADS2 knockdown. Further experiments will also help researchers fill in the mechanistic details about how the ultra-long-chain fatty acids produced by ELOVL4 enhance dengue virus infectivity.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Journal News

Sex and diet shape fat tissue lipid profiles in obesity

Oct. 29, 2025

Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta’s hormone network
Journal News

Mapping the placenta’s hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.

Spider-like proteins spin defenses to control immunity
News

Spider-like proteins spin defenses to control immunity

Oct. 17, 2025

Researchers from Utrecht University discovered two distinct binding modes of a spider-shaped immune inhibitor found in serum.