涩里番

Journal News

How bacteria fight back against promising antimicrobial peptide

Emily Ulrich
May 15, 2025

Antimicrobial peptides have potential in antibiotic drug development, including possible uses in combination with other antibiotics for infections that are difficult to treat. Scientists have shown that the peptide TAT-RasGAP317-326, originally developed as an anticancer compound, inhibits E. coli and Staphylococcus aureus, among other bacteria. The peptide contains residues 317-326 of the Ras GTPase-activating protein, or RasGAP, with an attached N-terminal cell-penetrating sequence from the HIV transactivator of transcription, or TAT, protein, and will be called TAT-RasGAP in this article for simplicity. Maria Georgieva at the University of Lausanne Hospital Center and a team in Switzerland performed a resistance selection experiment over 20 passages to obtain an E. coli strain resistant to TAT-RasGAP to identify mutations that could elucidate this peptide’s mechanism of action. In a recent Journal of Biological Chemistry , they showed that a mutation in BamA, an outer membrane protein critical for the insertion of other membrane proteins, helped block the peptide’s antimicrobial activity.

Illustration of a cross section of an E. coli cell. The cell wall is shown in green, the genome in yellow, DNA-binding proteins in tan and orange and ribosomes in purple.
David S. Goodsell, RCSB Protein Data Bank, via Wikimedia Commons
Illustration of a cross section of an E. coli cell. The cell wall is shown in green, the genome in yellow, DNA-binding proteins in tan and orange and ribosomes in purple.

The authors traced the mutation that protects E. coli from TAT-RasGAP to a negatively charged loop in BamA that extends into the extracellular space. The mutation changes a residue from a negative to a neutral charge. The authors hypothesized that the positively charged TAT-RasGAP may interact with this negatively charged loop for cell entry, and a negative-to-neutral mutation could have developed in the resistant strain to block this electrostatic interaction. Modeling and molecular dynamics indicated that BamA’s negatively charged loop likely interacts with the peptide.

However, further experiments showed that TAT-RasGAP does not produce the same  changes as known BamA inhibitors based on bacterial morphology viewed by brightfield microscopy and outer membrane protein quantification, indicating that BamA is unlikely inhibited by TAT-RasGAP. Future experiments will help resolve the full mechanism of action for TAT-RasGAP and could lead to novel antibiotics.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is ASBMB’s former science editor.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Phosphatases and pupils: A dual legacy
Profile

Phosphatases and pupils: A dual legacy

Nov. 13, 2025

Yale professor Anton Bennett explores how protein tyrosine phosphatases shape disease, while building a legacy of mentorship that expands opportunity and fuels discovery in biochemistry and molecular biology.

Extracellular vesicles offer clues to cattle reproduction
Journal News

Extracellular vesicles offer clues to cattle reproduction

Nov. 11, 2025

Extracellular vesicles from pregnant cattle support embryo development better than laboratory models, highlighting their potential to improve reproductive efficiency in bovine embryo cultures. Read more about this recent 涩里番 paper.

Proteomics reveals protein shifts in diabetic eye disease
Journal News

Proteomics reveals protein shifts in diabetic eye disease

Nov. 11, 2025

Using proteomics, researchers identified protein changes in eye fluid that mark diabetic retinopathy progression and may serve as biomarkers for vision-threatening complications. Read more about this recent 涩里番 paper.

Protein modifications drive lung cancer resistance
Journal News

Protein modifications drive lung cancer resistance

Nov. 6, 2025

New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Journal News

How antigen-processing proteins shape immunity

Nov. 6, 2025

Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Journal News

New chemical strategy boosts accuracy in proteomics

Nov. 6, 2025

Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.