Pathogen-derived enzyme engineered for antibiotic design
The World Health Organization classified the drug-resistant pathogen Acinetobacter baumannii as a critical priority for antibiotic development. One development strategy targets the production of acinetobactin, the A. baumannii siderophore, or iron chelator, that allows the pathogen to scavenge for the scarce iron nutrient inside the host. Scientists have previously determined that synthetic analogs of acinetobactin can curb bacterial growth by blocking iron uptake or inhibiting acinetobactin formation. To aid in analog production, Syed Fardin Ahmed and Andrew Gulick at the University at Buffalo wanted to leverage A. baumannii enzymes that biosynthesize acinetobactin. They published their recent in the Journal of Biological Chemistry.
Acinetobactin biosynthesis involves an assembly line process performed by nonribosomal peptide synthetases. In these biosynthetic pathways, an adenylation domain plays a key role in substrate selectivity. The authors used available structures of the acinetobactin adenylation domain BasE to pinpoint residues to mutate in the substrate binding pocket to alter the size and allow for molecules larger than the natural substrate 2,3-dihydroxybenzoic acid. They performed enzyme activity assays and steady-state kinetic analysis to identify and characterize four BasE variants that functioned with larger substrates with efficiencies similar to the wild-type enzyme with the natural substrate.
Finally, the researchers solved the structures of three BasE variants with alternative substrates in the binding pockets. These structures confirmed visually that the mutations enlarged the binding pockets, highlighting which BasE residues contribute to accommodating specific portions of the substrate chemical structure.
Future steps will include completing a combined chemical and enzymatic synthesis of acinetobactin analogs and testing their activity for bacterial growth inhibition. The authors anticipate that their detailed investigation of BasE substrate selectivity will advance the discovery of siderophore-inspired antibiotics.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Bacteriophage protein could make queso fresco safer
Researchers characterized the structure and function of PlyP100, a bacteriophage protein that shows promise as a food-safe antimicrobial for preventing Listeria monocytogenes growth in fresh cheeses.

Building the blueprint to block HIV
Wesley Sundquist will present his work on the HIV capsid and revolutionary drug, Lenacapavir, at the ASBMB Annual Meeting, March 7–10, in Maryland.

Gut microbes hijack cancer pathway in high-fat diets
Researchers at the Feinstein Institutes for Medical Research found that a high-fat diet increases ammonia-producing bacteria in the gut microbiome of mice, which in turn disrupts TGF-β signaling and promotes colorectal cancer.

Mapping fentanyl’s cellular footprint
Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.