ɬÀï·¬

Journal News

Matrix metalloproteinase inhibitor reduces cancer invasion

Emily Ulrich
Oct. 8, 2025

Matrix metalloproteinase-9, or MMP-9, remodels the extracellular matrix, but its dysregulation contributes to many diseases, including metastatic cancer. Efforts to develop MMP-9 inhibitors to treat cancer have been hampered by small molecules’ poor specificity and side effects from blocking other MMPs with similar catalytic domains. Tissue inhibitors of metalloproteinases, or TIMPs, block multiple MMPs, but tweaking their specificity is possible since some MMPs have unique domains that interact with larger protein inhibitors. Alireza Shoari at the Mayo Clinic and a team in the U.S. aimed to target the MMP-9 fibronectin domain for TIMP binding. They published their in the Journal of Biological Chemistry.

Using yeast surface display, the team screened a large library in a directed evolution experiment to identify a TIMP-1 variant with enhanced binding to the MMP-9 catalytic and fibronectin domains. They selected the strongest binder, TIMP-1-C15, and confirmed its MMP-9 inhibition in enzyme assays. The authors demonstrated that TIMP-1-C15 inhibition decreases if the fibronectin domain is removed, providing evidence that the fibronectin domain heavily contributes to the interaction.

Flow cytometry and dose-dependent inhibition assays showed that TIMP-1-C15 selectively binds and inhibits MMP-9 over MMP-1, -2 and -3, even though MMP-2 contains a similar fibronectin domain. In cell invasion assays with triple-negative breast cancer cells that require MMP-9, TIMP-1-C15 reduced cell invasion at least as well, or slightly better, compared to unmodified TIMP-1.

Future structural studies will reveal how TIMP-1-C15 binds MMP-9’s fibronectin domain over MMP-2’s similar domain. In addition, animal model testing will help determine TIMP-1-C15’s potential to treat metastatic cancer.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Protein modifications drive lung cancer resistance
Journal News

Protein modifications drive lung cancer resistance

Nov. 6, 2025

New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Journal News

How antigen-processing proteins shape immunity

Nov. 6, 2025

Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Journal News

New chemical strategy boosts accuracy in proteomics

Nov. 6, 2025

Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.