涩里番

Journal News

Pesticide disrupts neuronal potentiation

Ecem Arpaci
By Ecem Arpaci
June 17, 2025

The pesticide deltamethrin is widely considered a safer alternative to other chemicals, such as organophosphates due to being less toxic to mammals. However, previous studies in mice showed that deltamethrin exposure at early stages of development can lead to neuronal toxicity, but scientists do not understand the mechanism involved. Therefore, Leandra Koff and a team led by Fernanda Laezza from the Sealy Center of Environmental Health & Medicine at the University of Texas Medical Branch and colleagues in the U.S. investigated how deltamethrin induces neuronal toxicity and published their in Molecular & Cellular Proteomics.

juliendn via Flickr

The team focused on brain-derived extracellular vesicles, or BDEVs, structures that transport molecules, such as signaling proteins, between cells in the brain. Because changes in the BDEV proteome can be a sign of disease, the team used a mass spectrometry–based approach to compare the protein content of BDEVs in mice exposed to deltamethrin and controls. They found several differentially expressed proteins between the two groups. Some alterations are associated with neuronal structure, transport and long-term potentiation, which promotes synaptic connections and plays a role in learning and memory. These proteomic differences could be one explanation for neuronal toxicity due to impaired nutrient transport and growth.

BDEV protein levels could be used as biomarkers to evaluate the risk of neurodevelopmental disorders. More research is needed to understand how these proteins disrupt neuronal function at later stages of development.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Ecem Arpaci
Ecem Arpaci

Ecem Arpaci is a biochemistry student at Imperial College London and a research intern at Radboud University Medical Center. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Journal News

Sex and diet shape fat tissue lipid profiles in obesity

Oct. 29, 2025

Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta鈥檚 hormone network
Journal News

Mapping the placenta鈥檚 hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.