ɬ﷬

Journal News

Gut microbes could be key for cancer therapies

Oluwadamilola “Dami” Oke
July 25, 2023

Microorganisms produce substances that play a role in several of the human body’s metabolic processes. In some cases, the specific function and mechanism of action of these metabolites still mystify scientists. Uncovering these mysteries could lead to groundbreaking targeted therapies for cancer and other diseases.

The short-chain fatty acid butyrate is a bacterial metabolite involved in intestinal homeostasis that serves as a source of energy and initiates differentiation in epithelial cells. Because low cell differentiation is a characteristic of cancer cells, cancer researchers try to understand how bacterial metabolites such as butyrate affect epithelial cell differentiation and molecular phenotype.

Katarina Madunić and a team of scientists in the Netherlands studied glycosylation and differentiation in cells from the Caco-2 cell line, such as those shown in this contrast microscopy image.
/Wikimedia Commons
Katarina Madunić and a team of scientists in the Netherlands studied glycosylation and differentiation in cells from the Caco-2 cell line, such as those shown in this contrast microscopy image.

Katarina Madunić and a team of scientists in the Netherlands investigated the effect of bacterial butyrate on glycosylation and differentiation in an epithelial cell line derived from a human colorectal carcinoma in 1977 and known as Caco-2. They recently in the journal Molecular & Cellular Proteomics.

Mass spectrometry, or MS, separates molecules based on their mass-to-charge ratio and is frequently used to study metabolites. However, Madunić’s team was analyzing glycans that had identical masses, so the usefulness of MS was limited. To overcome this limitation, they used a unique separation technique called porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem MS.

Manfred Wuhrer, the corresponding author of the study, explained that this method uses a “high-end charcoal variant that separates the sugars one by one, hence resolving the isomers for mass spectrometric characterization.”

This unique approach was who published about it in 2004. It proved to be a technique that Madunić’s team could build upon for their investigations.

The researchers were surprised to find that the glycosylation of differentiated cells from the CaCo-2 cell line was substantially different from the glycosylation of other differentiated colorectal cell lines from their previous work.

Madunić said this finding “made us look into the changes in the cell proteome, from which we formed interesting hypotheses about the importance of glycan building block availability in the cell culture media influencing the cell glycosylation changes.”

In this study, the researchers wanted to investigate changes in glycosylation that occurred during differentiation in a particular cancer cell line. They did so, identifying specific O-glycans along with specific protein expressions that mark butyrate-induced versus spontaneous epithelial cell differentiation.

These findings are a step toward creating a repository of cancer-implicated metabolic and associated glycomic signatures. Such a repository can be used to further study the pathophysiology of various cancers and, consequently, to help develop targeted cancer therapies.

In future studies, the researchers hope to use more robust multiomics analysis to provide more depth to their findings and provide more mechanistic insights, Wuhrer said.

“We would like more information on the cellular metabolic signature and the expression of the glyco-genes, which shape the O-glycans. How is this evolving and changing upon bacterial metabolite exposure?”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Oluwadamilola “Dami” Oke

Oluwadamilola “Dami” Oke is a Ph.D. candidate of biomedical engineering at the George Washington University with an interest in communication and outreach for science advancement. She is an ASBMB Today contributing writer.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mapping the placenta’s hormone network
Journal News

Mapping the placenta’s hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.

Spider-like proteins spin defenses to control immunity
News

Spider-like proteins spin defenses to control immunity

Oct. 17, 2025

Researchers from Utrecht University discovered two distinct binding modes of a spider-shaped immune inhibitor found in serum.

A biological camera: How AI is transforming retinal imaging
Feature

A biological camera: How AI is transforming retinal imaging

Oct. 15, 2025

AI is helping clinicians see a more detailed view into the eye, allowing them to detect diabetic retinopathy earlier and expand access through tele-ophthalmology. These advances could help millions see a clearer future.

AI in the lab: The power of smarter questions
Essay

AI in the lab: The power of smarter questions

Oct. 14, 2025

An assistant professor discusses AI's evolution from a buzzword to a trusted research partner. It helps streamline reviews, troubleshoot code, save time and spark ideas, but its success relies on combining AI with expertise and critical thinking.

Training AI to uncover novel antimicrobials
Feature

Training AI to uncover novel antimicrobials

Oct. 9, 2025

Antibiotic resistance kills millions, but César de la Fuente’s lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.