Cardiolipin helps fruit flies take flight
Researchers at New York University have shown that cardiolipin, a phospholipid component of the inner mitochondrial membrane in fruit flies, exists for more than 30 days and may allow these flies to sustain wing-beat frequencies of more than 100 beats per second. In addition, they found that cardiolipin lengthens the lifetimes of fruit fly mitochondrial respiratory protein complexes. Their was published recently in the Journal of Biological Chemistry.
Cardiolipin stabilizes mitochondrial electron transport complexes by interacting with oxidative phosphorylation, or OXPHOS, proteins, which are critical for cellular energy generation. OXPHOS is the primary mechanism that fruit fly muscles use to generate adenosine triphosphate, a cell’s energy currency.

Previous studies have shown that cardiolipin interacts with OXPHOS proteins via noncovalent interactions and that the mitochondria require this connection to work at their best. Among mitochondrial proteins, OXPHOS proteins have exceptionally long lifetimes. Most phospholipids boast a half-life of a few days. However, , a research associate professor of anaesthesiology and lead author on the study, and his team showed that cardiolipin’s half-life is more than three times as long.
Ren compared proteins with cardiolipins: “Like long-lived proteins, cardiolipin can also be referred to as a long-lived lipid.”
This prompted researchers at NYU to wonder if the presence of cardiolipin impacts the longevity of OXPHOS proteins.
The team fed fruit flies, or Drosophila melanogaster, stable isotopes to measure the half-life of proteins and lipids. After feeding, these isotopes are incorporated into the flies’ existing muscle and other tissues.
“The fact that mature flies do not experience a change in their body mass makes Drosophila an excellent model organism for this experiment,” Ren said.
Since adult flies do not gain weight or grow new flight muscles, the heavy isotopes in their bodies can only be broken down by protein and lipid recycling inside their cells.
Because not all mitochondrial proteins are long-lived, Ren and his team decided to focus their work on a fruit fly tissue with minimal regeneration: the postmitotic flying muscle.
When the researchers ablated cardiolipin, the half-lives of respiratory protein complexes in the Drosophila flight muscle decreased by almost half.
These results indicate that respiratory proteins and cardiolipins live for a very long time, which is consistent with the notion that OXPHOS-containing domains in mitochondrial crista membranes are quite stable.
Ren said tightly packed cristae may explain cardiolipin and other proteins’ longevity. Crowding causes strong lipid–protein and protein–protein interactions but slows diffusion and molecular motion. Limited exposure to proteases and lipases, caused by strong interaction and slow diffusion, could increase the lifetimes of lipids and proteins.
, a professor of anaesthesiology at NYU and supervising author of the study, compared cardiolipin and OXPHOS proteins to collaborators.
“We proved that cardiolipin and OXPHOS complexes last a long time and showed that they rely on each other,” Schlame said.
Ren said he was amazed at how much energy fruit flies can generate using complexes packed into small spaces.
Ren and Schlame agree that fruit flies could be useful models for researching cardiolipins and their functions in human diseases. Alterations in cardiolipin metabolism are associated with a plethora of disorders including ischemia or reperfusion injury, heart failure, cardiomyopathy and cancer.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Proteomic variation in heart tissues
By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.

Antibodies inhibit hyperactive protein disposal
Researchers at the University of California, San Francisco, identify an enzyme inhibitor, offering new tools to study diseases like cystic fibrosis, neurodegeneration and cancer. Read more about this recent Journal of Biological Chemistry paper.

Scientists find unexpected correlation between age and HDL-C levels
In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.