ɬÀï·¬

Annual Meeting

Could corals use sound to communicate?

New evidence suggests they have genes involved in receiving or emitting sound
Nancy D. Lamontagne
April 28, 2021

Corals are part of a highly complex ecosystem, but it remains a mystery if and how they might communicate within their biological community. In a new study, researchers found evidence of sound-related genes in corals, suggesting that the marine invertebrates could use sound to interact with their surroundings.

Coral reefs make up less than 1% of the ocean floor yet support more than 25% of all marine life. Around the world, coral reefs are being threatened by climate change, ocean acidification, diseases, overfishing and pollution. A better understanding of coral communication could help inform policies that aim to protect this critical ecosystem.

“A growing number of studies have shown that trees can communicate, and that this communication is important for ecosystems such as rain forests,” said Camila Rimoldi Ibanez, a high school student in the dual enrollment program at South Florida State College. “Coral reefs are often referred to as the rainforests of the sea because of the habitat they provide for a wide variety of plants and animals. Thus, we wanted to find out how coral communicates.”

Courtesy of Camila Rimoldi Ibanez and James Hawker, South Florida State College
Camila Rimoldi Ibanez works with extracted coral DNA in the lab.

Ibanez will present at the ɬÀï·¬ annual meeting during the virtual Experimental Biology 2021 meeting, to be held April 27–30. Her mentor is , dean of arts and sciences at South Florida State College.

Many organisms that live in coral reefs perceive sound and use it to find their way to the reefs. Based on this information, the researchers decided to look for the presence of genes related to the reception and/or emission of sound in the coral Cyphastrea. Using PCR amplification, the researchers found probable evidence that two of the four genes they examined may be present in coral DNA. The genes they found — TRPV and FOLH-1 — are used for sound emission or reception in sea anemones and freshwater polyps, respectively.

In addition to performing more testing, the researchers want to sequence the TRPV and FOLH-1 genes they found to add additional evidence that these genes, or genes related to them, are present in coral.

“As we learn more about the negative impacts of sound in different kinds of ecosystems, it is vital that we set policies to protect and manage human noises in natural environments,” said Ibanez. “The more we know about how corals communicate, the better we can develop restoration and conservation projects to help corals as they face bleaching epidemics and other threats.”

Ibanez will present the findings in poster R4543.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Nancy D. Lamontagne

Nancy D. Lamontagne is a science writer and editor at Creative Science Writing based in Chapel Hill, North Carolina.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

What’s in a diagnosis?
Essay

What’s in a diagnosis?

Sept. 4, 2025

When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Annual Meeting

Peer through a window to the future of science

Sept. 3, 2025

Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
Journal News

Glow-based assay sheds light on disease-causing mutations

Sept. 2, 2025

University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent ɬÀï·¬ paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent ɬÀï·¬ paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.