ɬÀï·¬

Journal News

E-cigarettes drive irreversible lung damage via free radicals

Andrea Lius
April 17, 2025

Thousands of in tobacco cigarettes can cause cancer. In the early 2000s, Chinese pharmacist Hon Lik electronic cigarettes, or e-cigarettes, which many believed were a safer alternative to tobacco cigarettes. E-cigarettes deliver nicotine, the substance in tobacco cigarettes, making them addictive, without many of the cancer-causing, or carcinogenic, substances found in traditional cigarettes. However, scientists have found that e-cigarettes may not be as safe as many once thought. For instance, e-cigarettes bring such as an increased risk of cardiovascular disease.

Thomas Bjornstad via

In a recent published in the Journal of Biological Chemistry, an international group of researchers led by of the Ohio State University found that nicotine exposure through the use of e-cigarettes, colloquially known as vaping, led to lung injury in mice. The researchers showed that aldehyde oxidase, or AOX, a critical enzyme in the process of nicotine metabolism, mediates this effect. In this study, Zweier and colleagues established a link between e-cigarette vapor exposure, nicotine metabolism and lung injury and explored the molecular basis for this connection.

“Inherently, they’re all still nicotine delivery devices,” Zweier said, referring to e-cigarettes. “So, we wanted to know if there is toxicity from nicotine itself.”

Zweier’s team previously that AOX generates superoxide, a reactive oxygen molecule that causes cell stress and damage. Furthermore, another group reported that nicotine iminium, or NICI, an intermediate product of nicotine metabolism, is a potent AOX substrate. In the current study, Zweier and his colleagues directly showed that NICI metabolism by AOX triggers high-level production of superoxide. They further sought to understand the connection between extended nicotine exposure, superoxide generation by AOX and lung injury.

To achieve this, the researchers a study in which they placed mice into chambers where they received whole-body nicotine exposure from e-cigarette vapor, at similar concentrations a person would receive while vaping, six hours per day for up to 16 weeks. The team then assessed the mice’s organ damage using biochemical methods.

“Using a mouse model allowed us to predict the effects of chronic exposure in humans,” Zweier said. “When we normalize the lifespans, about a year of exposure in mice corresponds to about three decades in humans.”

Zweier and colleagues showed that exposure to nicotine from e-cigarette vapor increased the expression of the Aox1 gene in mice by more than six times the normal amount. Zweier and his colleagues found e-cigarette vapor also drove increased superoxide levels as well as molecular markers that indicate oxidative damage in the lung, such as carbonylated proteins, oxidized guanine species and nitrated tyrosine. They reversed these effects when they treated mice with raloxifene, an AOX inhibitor.

“E-cigarette juice can have a nicotine concentration as high as 150 millimolar,” Zweier said. “And we saw that (lung) toxicity occurs at micromolar levels (1000 times less). It’s just off the scale.”

In the future, Zweier hopes to investigate the doses and duration of exposure to nicotine that will cause lung injury. This is important, he said, because the U.S. Federal Drug Administration is currently attempting to regulate e-cigarettes, and these devices are the most popular tobacco products among youth.

“We need to know what level of nicotine is tolerable, and what level is toxic,” Zweier said. “Not only to the lung, but also to the whole body.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Andrea Lius

Andrea Lius is a Ph.D. candidate in the Ong quantitative biology lab at the University of Washington. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Targeting toxins to treat whooping cough
Journal News

Targeting toxins to treat whooping cough

May 1, 2025

Scientists find that liver protein inhibits of pertussis toxin, offering a potential new treatment for bacterial respiratory disease. Read more about this recent study from the Journal of Biological Chemistry.

Elusive zebrafish enzyme in lipid secretion
Journal News

Elusive zebrafish enzyme in lipid secretion

May 1, 2025

Scientists discover that triacylglycerol synthesis enzyme drives lipoproteins secretion rather than lipid droplet storage. Read more about this recent study from the Journal of Biological Chemistry.

Scientists identify pan-cancer biomarkers
Journal News

Scientists identify pan-cancer biomarkers

April 30, 2025

Researchers analyze protein and RNA data across 13 cancer types to find similarities that could improve cancer staging, prognosis and treatment strategies. Read about this recent article published in Molecular & Cellular Proteomics.

New mass spectrometry tool accurately identifies bacteria
Journal News

New mass spectrometry tool accurately identifies bacteria

April 30, 2025

Scientists develop a software tool to categorize microbe species and antibiotic resistance markers to aid clinical and environmental research. Read about this recent article published in Molecular & Cellular Proteomics.

New tool matches microbial and metabolic metaproteomic data
Journal News

New tool matches microbial and metabolic metaproteomic data

April 30, 2025

Scientists develop a bioinformatics program that maps omics data to metabolic pathways. Read about this recent article published in Molecular & Cellular Proteomics

Meet Paul Shapiro
Interview

Meet Paul Shapiro

April 29, 2025

Learn how the JBC associate editor went from milking cows on a dairy farm to analyzing kinases in the lab.