ɬÀï·¬

News

Linking two enzymes turns plastic-eating bacteria into super-digesters

But these bacteria won’t save us: we still need to use far less plastic to save the planet
Luyi Cheng
By Luyi Cheng
Jan. 18, 2021

Plastic is . Scientists have found tiny bits of microplastic even in the extremes of the Earth – from the  to the  – and . While  can be one of the most effective ways to reduce plastic waste, how do we deal with all of the plastic that already exists, polluting our oceans and overflowing out of landfills?

Plastic-bottles-445x297.jpg
Nick Fewings/Unsplash

Polyethylene terephthalate, also known as PET and one of the most common types of plastic, is unfortunately notoriously difficult to break down. In 2016 however,  outside of a bottle-recycling facility capable of decomposing plastic. The discovery revealed that the bacteria's abilities depend on two specific enzymes. These enzymes work together in a two-step process to break plastic down into smaller molecules that the bacteria can turn into energy.

 published in the Proceedings of the National Academy of Sciences demonstrates a way to improve the two-enzyme system. While naturally existing as two separate enzymes – PETase and MHETase – the researchers physically linked them together. The attached enzymes worked together more efficiently than the same two enzymes when unlinked. Depending on the length of the linking segment between them, the attached enzymes were able to release almost double the amount or more of the final broken down product.

With this process, PET, could be broken down by the bacteria in days, a process which would take hundreds of years in the environment. 

But breaking down plastic only deals with part of the issue of plastic waste. Recovering the plastic waste already in the ocean and other corners of the planet to deliver to recycling or decomposing facilities remains a daunting challenge. And even faced with the knowledge that we need to reduce plastic, the world has only been . Although these results are exciting, we're still far from solving our growing plastic problem.

This story originally appeared on , an editorial partner site that publishes science stories by scientists. to get even more science sent straight to you.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Luyi Cheng
Luyi Cheng

Luyi Cheng is a biology PhD student at Northwestern University working on understanding RNA structures and how they fold.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Journal News

A look into the rice glycoproteome

June 17, 2025

Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
Journal News

Proteomic variation in heart tissues

June 17, 2025

By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Journal News

Calcium channel linked to cancer drug resistance

June 12, 2025

Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Journal News

Host fatty acids enhance dengue virus infectivity

June 12, 2025

Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.