Predicting fatty liver disease from a tiny blood sample
In the U.S., , and an additional , making up about two-thirds of the adult population. While other factors such as diabetes, and high blood pressure also contribute to liver disease, obesity is the primary risk factor linked to metabolic dysfunction-associated steatotic liver disease, or MASLD, a condition characterized by chronic fat accumulation in the liver. of U.S. adults have some form of MASLD, with a significant portion of those affected being overweight or obese.
Now, however, , confounding traditional predictors and reinforcing the need for more accurate indicators.
Oswald Quehenberger is a professor in the School of Medicine at the University of California, San Diego.

“Liver biopsy is the gold standard method to determine which people are at risk of developing or already have liver disease,” Quehenberger said. “However, the procedure is invasive, and it’s impossible to subject everyone at risk to liver biopsies. There’s a desperate clinical need for a biomarker for this disease, and this was the premise for our study.”
Quehenberger and colleagues analyzed over 300 patient samples from a study on nonalcoholic steatohepatitis collected by the NASH Clinical Research Network to find such a biomarker. They reported on in the Journal of Lipid Research.
The researchers reasoned that a lipid would be the best biomarker for fatty liver disease, and after performing a comprehensive lipid screen comparing diseased samples with healthy controls, they focused on eicosanoids, which are oxygenated metabolites of unsaturated fatty acids such as arachidonic acid. This analysis resulted in 12 eicosanoids that accurately predicted fatty liver disease.
“We had done a very small pilot study previously with 30 samples and were able to segregate out the mild from the severe disease and the healthy controls,” Quehenberger said. “That was a very specific study that showed us it is feasible to do this. What we have now is more specific than what we generated before.”
Other laboratories have searched for, and found, biomarkers for MASLD, he said. “But during the validation process, they didn’t hold up. This has been a problem all along, especially with fatty liver disease. Here in this study, we were able to verify and validate our initial data with a validation cohort that was independently collected.”
This study required the right collaborators. About two decades ago, co-author Edward A. Dennis of UC San Diego organized the LIPID MAPS Consortium to categorize lipids, establish a universal nomenclature, and develop methods for their accurate measurement. After co-author Arun J. Sanyal, of Virginia Commonwealth University gave a talk on fatty liver disease at a LIPID MAPS meeting, he collaborated with Dennis and Quehenberger to search for noninvasive biomarkers for MASLD.
As a member of the NASH CRN, Sanyal secured samples from the biorepository for this study. The team developed a method to analyze thousands of metabolites in every sample. They couldn’t do this manually, so Quehenberger worked with researchers at the University of Graz, Austria to develop a software algorithm that could identify and annotate the metabolites detected by mass spectrometry.
Only a subclass of lipids was used for this paper, but the entire plasma lipidome was measured. The contribution of other lipids to MASLD is part of an ongoing investigation. Twenty years ago, this would have been impossible, but now Quehenberger can analyze a sample in less than six minutes.
“It is a fairly easy transition now to put this into a clinical laboratory,” he said. “It’s very specific, cheap, and most important of all, it’s noninvasive. It’s 50 microliters of blood.
"That’s all it takes.”
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta’s hormone network
Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.