From the journals: JLR
Leveraging TRIM38 in fatty liver disease progression and “no eating after bedtime.” Read about these papers recently published in the Journal of Lipid Research.
Leveraging TRIM38 in fatty liver disease progression
Non-alcoholic fatty liver disease, or NAFLD, affects more than a quarter of the world’s adult population. Patients with NAFLD can be asymptomatic or present with insulin resistance, fatigue and abdominal pain. NAFL, or simple steatosis, can evolve into nonalcoholic steatohepatitis, or NASH, cirrhosis, and, in some cases, liver cancer. Yet, no established pharmacological therapy exists for NASH.

In published in the , Xinxin Yao, Ruixiang Dong and colleagues from Taikang Medical School in Wuhan University and other research centers in China explored the potential of tripartite motif 38 protein, TRIM38, as a therapeutic approach to treat NAFLD and NASH.
TRIM38 is part of a superfamily of proteins with regulatory functions over the immune system and the inflammatory response. Specifically, TRIM38 prevents the activation of nuclear factor kappa-light-chain-enhancer of activated B cells, better known as NF-kB, a mediator of inflammation in mammalian tissues that can play a role in the pathogenesis of NAFLD.
The authors found that TRIM38 was downregulated in liver samples from human patients with NAFLD and that deleting TRIM38 in mice worsened high-fat diet–induced hepatic steatosis, inflammation and fibrosis. To confirm the role of TRIM38 in liver disease, the researchers overexpressed the protein in cultured hepatocytes and then exposed them to high concentrations of lipids in the culture media.
The study showed that TRIM38 suppresses expression of inflammation-related and lipid anabolism genes. These findings position TRIM38 as a promising therapeutic ally to help alleviate NAFLD and prevent progression towards NASH.
‘No eating after bedtime’
Do you enjoy late dinners and midnight snacks? You might want to reconsider. Studies have shown a positive correlation between night eating and obesity; that is, the later in the day you consume calories, the greater your chances of gaining weight.
Wenhao Ge, Qi Sun and colleagues at the Nanjing University of Science and Technology in China study the mechanism behind time-delayed eating patterns and body fat accumulation in mice. were published in the Journal of Lipid Research.
The authors found that dietary oil is preferentially incorporated into triglycerides and accumulated in adipocytes, or fat cells, when consumed at night rather than during the day.
In mammals, biologically determined rhythms, also known as the circadian clock, control feeding behavior and feeding-related processes in organs and tissues. This study found that the circadian protein Period 1, or Per1, directly contributes to night eating–associated obesity by modulating the activity of two key enzymes responsible for hepatic bile acid production.
In the gut, bile acids are necessary for correct emulsification and absorption of fat. Accordingly, mice lacking Per1 could not absorb fat during night feeding and were thus resistant to high-fat diet–induced obesity. When the researchers treated mice lacking Per1 with cholic acid, one of the most abundant acids in bile, intestinal fat absorption and accumulation in the adipose tissue were partially restored.
This study suggests that Per1 could be a potential target in treating obesity.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Pesticide disrupts neuronal potentiation
New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.