ɬÀï·¬

Journal News

JBC: How do protein tangles get so long?

Laurel Oldach
June 1, 2019

Long before Alzheimer’s disease patients notice any symptoms, neurofibrillary tangles composed of tau protein filaments begin to form in their brain cells. How toxic these aggregates are and how well they spread depend on their size — that is, the number of tau monomers they contain. However, scientists studying tangle formation have not been able to explain why different sizes of tau aggregates appear in disease.

But now researchers have discovered that instead of adding just one protein at a time, fibrils of various lengths can join end-to-end to create one larger filament. , published in the Journal of Biological Chemistry, helps explain how fibrils can grow to hundreds of nanometers. It also could help researchers understand mechanisms of an emerging group of drug candidates designed to inhibit tau aggregation.

A common simple model of tau aggregation and fibril formation includes two steps. First, two tau proteins bind slowly; additional tau molecules latch on quickly.

, then a graduate student in lab at THE Ohio State University, worked with to expand this mathematical model to include other known ways that tau fibrils behave. Scientists have observed, for example, that sometimes one fibril fragments into two. Or a new fibril can nucleate in the middle of an existing fibril.

Tau proteins labeled with three fluorescent dyesTau proteins labeled with three fluorescent dyes were allowed to aggregate in separate test tubes, shown in the three images at left. The different colored fibrils were mixed in a fourth test tube, at right, resulting in long fibrils with short sections of each color. Carol Huseby/The Ohio State University
The simple model predicted many short fibrils. But Huseby knew that, under a microscope, aggregated tau appears as a smaller number of long fibrils. That discrepancy suggested that something was happening in the real world that hadn’t been accounted for in the model. They hypothesized that short fibrils could attach end-to-end to get longer.

To test the hypothesis, Huseby labeled tau proteins with three fluorescent colors and allowed them to aggregate in separate test tubes. Then she mixed the different colored fibrils in a fourth test tube.

Images taken with a super-resolution fluorescence microscope showed long fibrils with short sections of each color, indicating that fibrils from the original test tubes had joined ends to form longer fibrils. Control experiments established that this can’t be explained by labeled molecules’ preference for like labels.

After Huseby incorporated this new mechanism into the model, it produced a better description of what purified tau proteins were doing as they formed aggregates. This study is the first to show that the fibrils can elongate by more than a single tau protein at a time.

Alzheimer’s disease researchers still are trying to discern whether tau fibrils are a cause or simply an effect of the disease. Transmission of fibrils from one cell to another may contribute to the spread of disease in the brain. A very long fibril, according to Kuret, is unlikely to spread in this way. “But once it’s broken up into little pieces, those can diffuse,” he said, “facilitating their movement from cell to cell.”

This study used just one type of tau. Six isoforms are known, and phosphorylation and other changes increase the protein’s complexity. The researchers plan to incorporate these variables in future work and to use the model to understand how tau inhibitors change the protein aggregates’ behavior.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Journal News

A look into the rice glycoproteome

June 17, 2025

Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
Journal News

Proteomic variation in heart tissues

June 17, 2025

By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Journal News

Calcium channel linked to cancer drug resistance

June 12, 2025

Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Journal News

Host fatty acids enhance dengue virus infectivity

June 12, 2025

Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.