Unraveling oncogenesis: What makes cancer tick?
Recent discoveries in cancer biology may bring forward an additional collection of tools in physicians’ arsenal of cancer therapeutics. Scientists now know that many cancer-associated mutations affect chromatin regulation and the function of multiprotein transcriptional complexes, which can ultimately lead to cancer development and growth. This knowledge may be used to develop future clinical approaches.
The ASBMB annual meeting is around the corner, and attendees can expect a wide variety of symposia offerings throughout the event. One of the symposia, oncogenic hubs: chromatin regulatory and transcriptional complexes in cancer, will focus on the role of transcriptional dysregulation, histone modification and chromatin regulatory complexes in cancer formation. of Harvard Medical School and of Duke University School of Medicine organized and will lead the session.
Wang, a current Journal of Biological Chemistry editorial board member and 2022 ASBMB Young Investigator Award recipient, said the symposium will focus on cancer but encouraged attendees from all fields to participate in the session.
“These topics can be applied to many other diseases as well,” Wang said.
According to Kadoch, the topics covered at the symposium directly relate to patient care and developing novel therapeutic approaches.
“We’re at a unique moment in time in which the learnings from first-in-class approaches in the clinic are coming back to the bench to inform new questions and propel next-step advances,” Kadoch said. “(We) hope this section of the ASBMB meeting does a good job of covering that.”
Wang added: “(This field) elevates basic science to the translational level to ultimately benefit patients.”
Kadoch and Wang selected a diverse array of speakers who study the role of molecular condensates, extrachromosomal DNA, chromatin regulatory machinery, epigenetics and more in cancer.
“I am particularly excited about the interplay of the speakers within the section and the opportunity for our audiences to take away numerous new approaches to exploring some of the most pressing biological questions relating to oncogenic hubs,” Kadoch said.
Check out the full to get the most out of #ASBMB25.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreFeatured jobs
from the
Get the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How Alixorexton could transform narcolepsy treatment
A new investigational drug, alixorexton, targets the brain鈥檚 orexin system to restore wakefulness in people with narcolepsy type 1. Alkermes chemist Brian Raymer shares how molecular modeling turned a lab idea into a promising phase 3 therapy.

Phosphatases and pupils: A dual legacy
Yale professor Anton Bennett explores how protein tyrosine phosphatases shape disease, while building a legacy of mentorship that expands opportunity and fuels discovery in biochemistry and molecular biology.

Extracellular vesicles offer clues to cattle reproduction
Extracellular vesicles from pregnant cattle support embryo development better than laboratory models, highlighting their potential to improve reproductive efficiency in bovine embryo cultures. Read more about this recent 涩里番 paper.

Proteomics reveals protein shifts in diabetic eye disease
Using proteomics, researchers identified protein changes in eye fluid that mark diabetic retinopathy progression and may serve as biomarkers for vision-threatening complications. Read more about this recent 涩里番 paper.

Protein modifications drive lung cancer resistance
New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.